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Let f be any continuous real-valued function on the interval [-I, 1]
(i.e., f E C[-I, 1D, and let p~ = p~('; f) denote, for each n ;::;: 0, its unique
best uniform approximation from 7T n on [-1, 1], where 7T n denotes the collec­
tion of all real polynomials of degree at most n. Then, it is well known
(cf. [2, p. 34, Exercise 3D that the assumption thatfis odd implies that each
p'j'; is odd, whence p'j';(O) = 0 for every 11 O. Recently, Lorentz [3, 4]
conjectured that the converse is also true, i.e.,

LORENTZ CONJECTURE I. If, for any f E C[ - I, I],

for all n 0, (1)

then f is odd.

In addition, Lorentz [4] has made the following related conjectures:

LORENTZ CONJECTURE 2. I;; jor any f E C[-I, I], there is an CXT °In

[ - I, I] for which

then! 0.

for all 11;::;: 0, (2)
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LORENTZ CONJECTURE 3. If, for any f E C[-I, I],

for all k 0, (3)

then f is odd.

LORENTZ CONJECTURE 4. If, for any f E C[-I, I j,

for all k 0, (4)

then f is even.

The object of this note is to give partial answers to all of the above conjec­
tures.

To begin, given any fE C[-I, I] and any nonnegative integer n, set

(5)

and put

En(x) := EneX) + Ene-x) = [f(x) + f( --x)] - [p:(x) + P:( -x)], (6)

so that En is an even function on [-I, I] for all n ;? 0. It is well known
(cf. [2, p. 30]) that there exist at least n + 2 distinct alternation points
g{~n)}~!12 such that

and

-I /' c(n) < c(.n)
--.:::::::: Sl S2 I, (7)

,\( - I)J E,,(t;"»), j n (8)

where'\ = I or'\ =-1.
Noting that I En ( -ttl)] Ilf - P: IIL

o
)-1.I1, we have from (8) that

and hence, for the function En(x) in (6), there holds

VI j n i 2. Vn O. (9)

Now, this oscillatory behavior of En implies, from the continuity of En , the
existence of zeros of En in [-I, I]. The following easily verified lemma
gives a more precise form of this observation.
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LEMMA I. LetfE C[-l, 1] satisfy

[f(x) + fe-x)] E e1 [ -I, I].
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(10)

Then, for each n ?: 0, En has (counting multiplicities) at least n + I zeros in
[- I, I], where each zero of En is counted as having a multiplicity of order at
most 2, and where any zero of En counted as having a multiplicity oforder 2 is a
~~:) for some j, 1 ~ j ~ 11+ 2.

Concerning Lorentz Conjecture 1, Vie now assume that fE C[-I, I] is
such that

p;,,! 1(0; f) ~. 0, Vk 0, (I I)

which is a weaker assumption than that made in (I). Evidently, since the se­
quence {p!(.; f)};';'~o converges to f on [-I, I], the assumption of (II) implies
that

/(0) = 0, (12)

whence (cf. (6»)

Vk o. (13)

Thus, in the case when iif - P{jC+l I!Loof-l,l] °(the remaining case being
trivial), it follows from (11) and (12) that no ~;2k+l) can equal zero. But as
E2/H(X) is even with £2"+1(0) = 0, its (at least) double order zero at x c- 0 is
counted only once in Lemma I. Hence, E2k+1 has at least 2k T 3 zeros in
[- I, I] and thus, because of evenness, there must be at least 2k -+- 4 zeros in
[- I, I]. This is stated as

LE~1~1A 2. Let f E C[-I, I] be such that (J 0) and (II) hold. Then, for each
k 0, the function E2lc+l has (counting multiplicities) at least 2k -1- 4 zeros in
[ .- I, I], where each zero is counted as having a multiplicity oforder at most 2.

Next, because of evenness considerations, we can write

Vk ?: 0, (14)

where Sl, E 7Tlc • Similarly, we can write

f(x) -+- f( - x)=: F(x2),

and we then set

(15)

t E [0, I], Vk ?: 0. (16)
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This brings us to our first main result, which establishes the partial validity
of Lorentz Conjecture 1.

PROPOSITION 1. Let f E C[ - I, I] satLlfF the conditions:

(i) P0,+1(0; 1) ,= 0 Vk ~ 0, and

(ii) the function F(t) defined in (IS) has an analytic extension F(z) which
is an entire function of exponential type T with 0 :'(. T < rr!2, i.e., (cf Boas
[1,p.8]),

where MF(r) :c= maxli F(z)i: I Z I 1
,1,.

( 17)

Then, f is odd.

Proof By condition (ii), the function R,,(t) defined in (16) satisfies
R" E Cf(O, I]. Furthermore, interpreting the result of Lemma 2 for R,,(t),
it follows that Rit) has at least k !- 2 zeros in [0, I]. Thus, by the generalized
Rolle's Theorem, there exists a /3", il E: [0, I] for which

'Ik O. (18)

But since 5" E rr" , (18) implies from ( 16) that

Vk O. (19)

Also, by condition (i), we have F(O) f(O) 0, and on setting /30: 0, (19)
can be extended to

with j3j cc [0, 1], Vj O. (20)

Next, defining G(z) := F«z 1)/2), it follows from (17) that G is entire of
exponential type u with 0 :'(. u < rr/4, and from (20) there exist y/s such that

with y; c [-1. I]. Vi O. (21 )

But using a classical result of Schoenberg [6], the above properties imply
that G(z) 0, whence F(z) O. Recalling the definition of F in (15), it
follows that f must be odd. I

Remark I. In Proposition I, condition (ii) can be replaced by the stronger
assumption

(ii)' fIx) has an analytic extension f(z) which is an entire function of at
most order 2 and type;\, where 0 ..~:;; ;\ < rr/2.
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Remark 2. As a special case of Proposition I, we have that ifI is any real
polynomial function and if condition (i) holds, then I is odd.

As a simple application of Remark 2, consider any odd degree Zolotarelf
polynomial (cf. [5, p. 41])

III 1.

where q is deflned to be the best uniform approximation to X 2m1 .. ax2m on
[-I. I] from 7T2m 1 . We prove that

o for any () 0, any m l.

!ndeed. if we assume on the contrary that 2 2.,,1+1(0; a) c= 0 for some aF 0,
then P;k+1(0; 2 2"'+1)= 2 2m+1(0; a) 0 for all k /1/. Also, from the
definition of the Zolotarelf polynomials, it follows that 22",~ix; a) has an
alternation set consisting of at least 2m -+- I distinct points in [--1, 1],
whence P;i'k+l(X; 2 2m+1) =:-=: 0 for all 0 :S. k /1/ - I. But then Remark I
implies that 2 21111 (X; a) is an odd function, which is absurd for a F O.

Remark 3. The assumption (i) in Proposition 1 cannot be weakened, i.e.,
no one condition of (i) can be deleted without destroying the conclusion of
Proposition I. Indeed, for each nonnegative integer /1/, there exists a poly­
nomial function .r:,,(x) such that

Vk 0, k T 111, (22)

and such thatf,,, is not odd. To see this, let Tn(x) == cos(n COS-IX) denote the
classical Chebyshev polynomial (of the first kind) of degree n and, for
m 0, set

-cos(7Tj2(m:- I)).

(23)

We note that Qm=I(O) = 0 and that Qm+l(t) has precisely /1/ ...\.. I equioscilla-
tions on the interval 0 ,:;; t I. Now, set

XE [-1, I]. (24)

Since f:" E 7T211',2' we have P0C+l(0; III,) =cc Im{O) = Q",=I(O) == 0, for all
k m I. Furthermore, from (24), the function f,,.{x) has an alternation
set consisting of 2m -+- 1 points in [--I, I], and hence P'tJ'+I(X; 1,,,) =:= 0 for
all 0 k m -- I. Thus, (22) holds for all k =F m; however, .f,n(x)(~ 0) is
an eve/1 function of x.
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Rmwrk 4. If fE C[-', I], f 0, and if we assume only that condition
(i) holds in Proposition I, then we can deduce that f is certainly not even.
Indeed, suppose f(x) is an even function. Then, the polynomial .1'/(1) defined
in (14) is the best uniform approximation from 'TT/( to F(t) on the interval
[0, I] for all k O. But condition (i) implies that .1'/(0) 0 Vk 0, whence
.1'/(+1(1) .1/;(t) does not have all its zeros ill the open interval (0, 1). Using a
lemma of Lorentz (cf. [3, p. 290]), this implies that .1;,.(1) .1'/,' let). As
so(t) O. then .1'/,(1) 0 for all k 0 and hence 0 F(t) j(,/i)
f(·- V it ) 2fh/f), which contradicts the fact thatf O.

Concerning Lorentz Conjecture 2. consider the following counterexample.

For each positive integer I7l I. define ili/:.;) E C[ ,·1. I] by means or

where b
j

o Vi l. 0 I b.
; iii

(25)

where T,,(x) denotes, as before, the Chebyshev polynomial (of the first
kind) of degree 11. From S. N. Bernstein, it is well known (cf. Lorentz
[3, p. 290]) that the partial sums, S,,(x; m), of!II/(x). defined by

Sf/eX; 111) : I bJakt).
j'~--}l1

0,

for IJ

for 0

Ill,

1/ Ill,

(26)

are the polynomials of best uniform approximation to fm on [ I. I], i.e.,

Now, let

VII O.

(27)

Vm l. (28)

Then, it is easily seen that T:li(X) has CI'II/ as a zero for each j m. whence
Sn(Cl:m; Ill) 0 for each 11 ?: O. But, as!m is not identically zero and as
(I'm / 0, we see from (27) that J:" constitutes a counterexample to Lorentz
Conjecture 2 for each 111 I. Note that CXm 10 as 111 ... ,.~x;.

Of course, T,)m(X) itself, by the same reasoning, is also a counterexample.
The reason that the more complicated!", of (25) was considered is to show that
if the restriction that ''fis not a polynomial" is added to Lorentz Conjecture 2,
this conjecture still remains false for certain choices of (Y.

We remark however that if Ci = I or ll' == -I in Lorentz Conjecture 2.
then indeedf O. This follows, as in Remark 4, from the fact that p~+ leX;/)
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p~(x;.f) does not have all its zeros in the open interval (-I, I), for a][ n O.
!t still remains an open problem whether there is some particular value of
Ie c= ( - I, I) for which Lorentz Conjecture 2 is valid.

Turning now to Lorentz Conjecture 3, this conjecture is false as stated
since f(x): x + J has pt(x; /) :=c J, and p;(x;.f) ~•. x 1- 1 for all n 1.
Thus, {p,:C ;f)Y::~o satisfies Lorentz Conjecture 3 without f being odd. This
suggests modifying this conjecture by adding the hypothesis f(O) 0:

LORENTZ CONJECTURE 3'. If for G/zyfE C[-l, I] lI'ithf(O) 0, IIC have

Vk o. (29)

thcn f is odd.

With the assumptions of (29), it follows that E2k+1(X) E2ki 2(X) for each
Ii 0, so that f - PiJ'+l has at least 2k 4 distinct alternation points
:tj2l.! 1)};:j4 satisfying (7) and (8). Thus, Lemma I can be directly applied
to deduce, as in Lemma 2, that E21c+j (x) has at least 2k -'-- 4 zeros (where each
zero is counted as having a multiplicity of order at most 2), and moreover,
the proof of Proposition I can be applied without change. Thus, we have the
following partial affirmative result for the Lorentz Conjecture 3':

PROPOSITION 2. Let fE C[-l, I] sati~fy f(O) ~ 0 and P;k , l(x;f)
po. I Ax; f) for each k O. If the function F(t) defined in (15) has an analvtic
extcnsion F(z) )vhich sati~jies (17), then f is odd.

Turning finally to the Lorentz Conjecture 4, the basic approach we have
previously llsed can, with minor modifications, be applied here as well. For
brevity, we si mply state the following partial affirmative result.

PROPOSITION 3. Let f E C[~ !, I] satisfy ptt,.(.'c.f) pik 11(X: f) for all
It O. Define PCt) by

f(x) - f( -x): xF(x2 ), (30)

and assume that F has an analytic extension p(z) lI'hich satisfies (17). Then,
f is even.
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